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Abstract

In this report, I describe the methods I have used to add temper-
ature information on top of Jos Stam’s source code for real-time fluid
dynamics. I also implemented a function called vorticity confinement
which adds extra vorticity in places where numerical dissipation damps
fine-scale motions. The extensions I have made on top of Stam’s work
is done by Harris[2] et al.

1 Introduction

When presented with this assignment, I had a hard time choosing what to
do. Procedural clouds felt like an interesting area, creating something that
looked like clouds with different mathematical methods. But when I read
more about it, I delved even deeper into the cloud generation treasure, find-
ing articles about cloud simulation in real time. This was an even more excit-
ing area, with math that handled fluid and smoke simulations together with
light calculations, all in real time. This was also my downfall, after a week
of research and reading I realised I was in way over my head. The compu-
tational theory needed to turn complex intergrals and differential equations
into C++-code was beyond what I could teach my self in a one week project.
But finally I managed to find Jos Stam’s paper on Real-time fluid dynamics
in games [5] together with source code, something that could save part of
my project. I have used all of his code, and tried to extend it into handling
temperature, and also to add extra convection where it usually dissipates.
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2 Previous work

It would be way to hard to describe Stam’s work in this report, and I therefore
refer to his paper instead of repeating the same information here. To try to
sum it up in a paragraph: Stam presents a simple solution to the Navier-
Stokes equations, one that - even though it does not have the strict physical
accary needed in research of fluid flow - lets us quickly solve the equations of
fluid flow with the visual quality needed for games. The equation that Stam
solves are

∂u

∂t
= −(u · ∇)u + v∇2u + f (1)

∂ρ

∂t
= −(u · ∇)ρ+ κ∇2ρ+ S (2)

Basically, a fluid is described by modeling a velocity field: a function that
assigns a velocity vector to every point in space. This can then be affected
by various forced, for instance heat rising, an object moving through it, etc.
The Navier-Stoken equations are a precise description of this evolution of
the velocity field over time. Given the state of the velocity and a current set
of forces, the equations tell us exactly how the velocity will change over an
infinitesimal time step.

A velocity field on it’s own is not really visually interesting though. When
we discuss clouds, the field will be visible by moving condensed water, but this
could also be smoke or dust particles. But instead of modeling the speed of
every water or smoke particle, we represent the particles as densities, allowing
us to render it quickly in OpenGL. The rendering also automatically adds
an interpolation, creating a visually softer result.

3 Adding functionality

Stam’s paper and implementation handles smoke, which is first deployed in
specific places, and then affected by a force created by the user. The user is
then able to also add more smoke after the forces have been applied. Harris et
al adds a lot of physics behind their calculation of cloud dynamics, and their
behaviour. I am unable to add (or even understand) all of their calculations
that will affect the behaviour of the particles (densities), but I have tried
to narrow their paper down to two things that I think I am able to add to
Stam’s implementation. These are as mentioned earlier vorticity confinement
and buoyancy.
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Vorticity Confinement Vorticity confinement is a method of adding force
where it is usually damped out because of numerical dissipation. Clouds, as
well as smoke, contains rotational flows at a variety of scales, and vorticity
confinement is used to add back the fine-scale motions that are dampened
first. It works by first computing the vorticity ω = ∇ × u, from which a
normalized vector field

N =
η

|η|
, where η = ∇|ω| (3)

is computed. The vector N point from areas of lower vorticity to areas of
higher vorticity. From these vectors we compute the force that can be used
to replace dissipated vorticity back in:

fvc = εh(N × ω). (4)

Here ε is a user-controlled scale parameter and h is the grid scale.

Buoyancy Since the only source of temperature we have is the added wa-
ter vapor, we use the density array to represent temperature as well. This
temperature will be affected by the same convection and vorticity that the
density. My hope was that this would show in the simulation, allowing newly
added vapor to be hot and rush up towards the ceiling, while older vapor
starts to spread out and slowly fall down.

The work that [2] has done on buoyancy involves many steps in computing
the upwards lift that will act as a force upon the smoke/vapor, and I have
not been able to fully understand all the steps in it. Therefore I chose
to implement a simpler version which act as the smoke density technique
originally presented by Fedkiw et al., [1]. In addition to calculating the
velocity and pressure fields, a smoke simulation must maintain scalar fields
for smoke density, d, and temperature T . The buoyant force is modified to
account for the gravitational pull on light water vapor:

fbuoy = (−κd+ σ(T − T0))k̂ (5)

where κ is a constant mass scale factor and σ is a constant scale factor, T0 is
the ambient temperature and k̂ represents the vertical direction. This allows
for the smoke to rise as if it is warmer that its surrounding atmosphere.

4 Future work

There are several parts which I am not fully content with, in regards to what
I was hoping to achieve when I started. I do understand that I can’t expect
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to implement Harris paper in a week’s project, since it actually resulted in
his dissertation paper [3], weighing in at 173 pages. The paper I started
reading was a lot less extensive though, which gave me the impression that
it could be done with some extra work.

I failed to implement the atmospheric parts of the paper (Rogers and Yau
[4]), like pressure, potential temperature, mixing ratio (of hydrometeors) and
thermodynamic equations. This is what actually makes the clouds behave
like clouds, whereas they now more appear as light smoke.
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